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Abstract. The method of ’symmetrized‘ stochastic truncation is applied to the (2+1)- 
dimensional Ising model, to calculate the ground-state energy, mass gap, magnetization 
and susceptibility on lattices of sizes up to 6 X 6 sites. The method is shown to be a powerful 
and accurate Monte Carlo technique, provided the lattice size is not too large, and the 
model is suitably ‘convergent’. Finite-size scaling estimates of the critical indices are 
u=0.627(2), e =0.12(2), 8=0.324(3), and y =  1.23(1). An estimate of the combination 
y/u+2p/v=3.000(1) isobtained,inoutstandingagreementwiththe expected hyperscaling 
relation. 

, 
1. Introduction 

Finite-size scaling theory (Fisher 1971, Barber 1984) has proved to be a very powerful 
tool for the exploration of critical behaviour in lattice models. There are two alternative 
strategies one may adopt. The first one (Nightingale 1976, Hamer and Barber 1980, 
1981) is to compute the properties of a sequence of small, finite lattice systems exactly, 
using a method such as the Lanczos algorithm, and then extrapolate to the properties 
of the bulk lattice using the theory of finite-size scaling. The second strategy (e.g. 
Bhanot et al 1987, Alves et al 1990) is to perform approximate calculations for much 
larger lattices, using a Monte Carlo technique, and thus approach the bulk limit directly. 

For simple two-dimensional models, the first strategy has been very successful, and 
is capable of great precision. For three-dimensional models, however, the number of 
basis states proliferates so fast that one is limited to only very small lattice sizes, and 
the finite-lattice sequence is too short to do a very accurate extrapolation to the bulk 
limit. For the (2+ I)-dimensional king model on a triangular lattice, for instance, the 
largest system which has been solved exactly to date (Hamer and Johnson 1986, 
hereafter referred to as I; Henkel 1989) is the 5 x 5 latticewhich already involves 116K 
basis states. The 6 x 6  lattice would involve around 160 M basis states, which puts it 
beyond the reach of exact calculations at the present time; although by a tour de force 
Lin (1990) has recently managed to obtain exact Lannos eigenvalues for the Heisenberg 
spin model on a lattice of 32 sites. Several attempts have been made (Irving and Hamer 
1983, Patkos and Rujan 1985) to find a way of cutting off the less important basis 
states so t i s  to make a 6 x 6 calculation feasible, but to date they have tended to give 
unacceptable systematic errors. 

0305-4470/93/122855 t17$07.50 @ 1993 IOP Publishing Ltd 2855 



2856 P F Price et al 

The method we discuss here, namely ‘symmetrized stochastic truncation’ (Allton 
et al. 1989, Hamer and Court 1990, Hamer et aI 1990), represents something of a 
halfway house between the two strategies outlined above. It is a Monte Carlo method 
which is slow, but very accurate, and capable of giving essentially exact results for 
small lattices. It is not suitable for lattices of huge size, but should be capable of 
extending the reach of the Lanczos technique to somewhat larger lattices, providing 
sufficiently good results to allow an accurate extrapolation to the bulk limit. 

Our aim in the present work was to use stochastic truncation to calculate various 
thermodynamic quantities for the (2+ 1)-dimensional king model on a 6 x 6 lattice, 
with an accuracy sufficient to allow improved estimates of the critical indices of the 
model, via finite-size scaling. In the event, we have fallen somewhat short of this aim. 
Improved estimates of the critical parameters have been obtained, but these are due 
mainly to more careful extrapolation procedures, and more complete results for the 
5 x 5 lattice. The results for the 6 x 6 lattice are good, but not quite good enough they 
would need to be approximately one order of magnitude more accurate to allow 
improved finite-size scaling extrapolations. This ought to be possible in the near future. 
Enough has certainly been done to establish the feasibility of the method. 

In section 2 of the paper we discuss the stochastic method and its advantages and 
limitations. The numerical results are presented in section 3, and our conclusions are 
summarized in section 4. 

2. Method 

The quantum Hamiltonian of the (2+ 1)-dimensional king model on a triangular lattice 
may be written (Fradkin and Susskind 1978) in the dimensionless form 

H = C  (1--m3(m))-x C ~ d m ) ~ h + C ) - h C  ul(m) (2.1) 
m m.P m 

where m labels sites, and f i  labels the three axis vectors of the triangular lattice. The 
ui are Pauli matrices acting on a two-state spin variable at each site, x is the inverse 
‘temperature’ variable, and h is the magnetic field. Periodic boundary conditions are 
assumed: 

ui (m+ M z )  = u3(m) (2.2) 

for the M x M lattice. In the ‘high-temperature’ representation, u3( m) is taken diagonal, 
and the basis states are taken as eigenstates of u3(m):  

u3(m)  = i l .  (2.3) 

2.1. The basic algorithm 

The stochastic truncation method has been discussed in several recent papers 
(Nightingale and Blote 1986, Allton er al 1989, Hamer and Court 1990, Hamer et al 
1990). It is a Monte Carlo version of the simple power method for finding the dominant 
eigenvalue and eigenvector of a matrix H, and simulates the Schrodinger equation, as 
follows. Suppose the eigenvector I+,,) is represented by a superposition of basis states I i): 

I+d=C a,li) (2.4) 
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then the amplitudes ai obey the Schrodinger equation 
1 

Eo i 
a, = - 2 H k t a t  (2.5) 

where Eo is the corresponding eigenvalue. In the stochastic truncation method, one 
generates an approximate eigenvector (unnormalied) which at the mth iteration is 
represented by 

I+”)=c nr’li) (2.6) 
i 

where the amplitudes or ‘occupation numbers’ n?’ are integers (in the simplest case). 
Define also an ‘ensemble size’ ~ , 

M ” = C  n;’ (2.7) 
i 

and a ‘score’ S”’ which approximates the eigenvalue; then the trial vector at the next 
iteration is defined by the rules 

and 

S m + l )  = S m ) N ” C 1 ] / ” ,  (2.9) 
where R [ x ]  is a ‘rounding function’ which rounds x either up or down to the next 
integer value by a Monte Carlo process such than on average 

R [ x ] = x .  (2.10) 

Each iteration thus corresponds to a further application of the Hamiltonian matrix to 
the trial vector, following the prescription of von Neumann and Ulam, Equation (2.9) 
is simply designed to compensate for fluctuations in the ensemble size, and to bring 
the system into equilibrium. When the system reaches equilibrium, a comparison of 
equation (2.8) with the eigenvalue equation (2.5) shows that, on average, 

(nk)nak (2.11) 

and 

(S) = Eo 
which is the eigenvalue we are interested in. 

In practice we work with a matrix H‘, defined by 
H = M ~ - H  

(2.12) 

(2.13) 
so that the ground state of H is the dominant eigenstate (with the largest eigenvalue) 
of H‘; and furthermore, the matrix H‘ has all elements positive semidefinite, so that 
the amplitudes ai are all real and positive, as assumed implicitly at equation (2.6). 

The e5ciency and accuracy of this method depend crucially on the details of 
implementation of this procedure. In the present case, we have aimed for the maximum 
possible accuracy, at the expense of increased computing time, as follows: 

(i) The ‘rounding function’ R has been taken as 
i f x a l  

R [ x ] =  1 if 1 > x> 8 (2.14) is ife>x>O 
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where E is a random number between [0,1] generated by a Monte Carlo routine. Thus 
for large amplitudes x the exact value is retained (and the occupation numbers are 
actually taken as real numbers rather than integers), while small amplitudes are 
stochastically rounded to either zero or one, which effectively truncates the number 
of basis states involved. 

(ii) The individual enetries HkjnF)/Sm’ in equation (2.8) are likely to be small, 
and would usually be rounded to zero, so one would waste a lot of time in processing 
each element individually. We take advantage of the fact that if the magnetic field h 
is zero, the off-diagonal matrix elements are all the same in magnitude (equal to the 
coupling x). For each given initial state li), we therefore round the sum Z k + ;  Hkjn;l) /Sm) 
to an integer final states at random from the possible states that can 
be reached via the link operators ul(m)ul(m+fi),  each with occupation number 
np+l)= 1. For further details see Hamer and Court (1990). 

(ii) We have chosen to ‘symmetrize’ our basis states under lattice translations, 
rotations and reflections. These lattice symmetry operations must be performed on 
each new state, and then a standard representative must be chosen from among the 
resulting configurations. By identifying states which are degenerate under these sym- 
metry operations, the size of the full basis set is much reduced, which should allow 
higher accuracy. The final states are then ‘gathered‘, by looking up each state in a 
master file of spin codes, and adding up the separate contributions to each final state 
amplitude. 

These ‘symmetrization’ and ‘gathering’ procedures are very much the same as one 
would perform in a Lanczos algorithm (Lin 1990). They are very expensive in computer 
time, and increase the total time by some two orders of magnitude for the 6 x 6 lattice. 
If one does not perform these procedures, on the other hand, the ensemble rapidly 
‘fragments’ into a~set of N independent random walkers, each with occupation number 
n = 1, which all have to be processed independently. One would not be able to handle 
anything like the ensemble sizes which we have used in what follows. 

If the system is a ‘convergent’ one, dominated by a relatively small number of basis 
states with large amplitudes, then after symmetrization and gathering the average 
occupation number (n) will be large, and since one is effectively processing ( n )  members 
of the ensemble all together at each step, one may compensate for the time spent in 
these extra procedures. 

and choose 

2.2. Variational guidance 

Some form of variational guidance is essential in a large system if one is to obtain 
good accuracy. Suppose that a variational approximation to the ground-state eigenvec- 
tor is already known, IJlo)=xo). Then one way of implementing variational guidance 
(DeGrand and Potvin 1985) is to perform a similarity transformation: 

I*’)= UlJl) (2.15) 

H = UHU-I (2.16) 

where 

(I, = ( i  I x& (2.17) 

and then to apply the algorithm as before to It)’) and H‘. The eigenvalues are unchanged, 
and so the average score (S)  still estimates the eigenvalue Eo; but the accuracy of the 
estimate may be very much improved. 
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The Ising model in the high-temperature representation is a’konvergent’ system, 
and one finds (Irving and Hamer 1983) that the basis-state amplitudes in the ground 
state decrease exponentially with the number of ‘Ripped spins’, or with the unperturbed 
energy E:, where E: is the eigenvalue of 

Ho=Z(l-rj(m)). (2.18) 
m 

Taking this into consideration, and also the fact that flipped spins like to cluster 
together, we have chosen to use a two-parameter variational wavefunction: 

( i  I ,yo) = exp( -c1 E:+ ~ ~ ( 2 1 ;  -E:)) (2.19) 

where e,, c2 are variational parameters to be optimized, and 1, is the number of flipped 
spins which have another Ripped spin next-door to them in basis state li). These 
variational weighting factors were separately rounded and multiplied in for each chosen 
final state. 

2.3; Calculation of other thermodynamic quantities 

In order to calculate critical exponents for the model, we need to know derivatives of 
the eigenvalues as well as the eigenvalues themselves. Denote the first two eigenvectors 
of H as I$o) .and I&), with eigenvalues Eo and E,, which belong to the even and odd 
spin-Rip sectors respectively; then the quantities of interest to us are (Barber 1984) 
the mass gap 

m) = E,(x) -Eo(x) (2.20) 

the Callan-Symanzik beta function 

P(x) 3 F ( x ) / ( F ( x )  -2xF’(x)) (2.21) 

the ‘specific heat’ per site 

-xZ a2Eo E ( x )  =- - 
M 2  ax2 

and the susceptibility per site 

(2.22) 

(2.23) 

The ‘thermal’ derivatives can be calculated as follows. Set h = 0, and consider a 
small increment A in the coupling x; then we can write the Hamiltonian as 

H=Ho+(x+A)V (2.24) 

and perform a Taylor expansion for the eigenvector and eigenvalue: 

I$dx + A ) ) = I  [aoi(x) + aii(x)A+ 40+(x)A~lli)+ o(A3) 

E,(x+A) = E,(x)+ E X X ) A + ; E ; ( X ) A ? +  o(a3). 

(2.25) 

(2.26) 

i 
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Substituting these expressions into the Schrodinger equation and equating coefficients 
of powers of A one obtains the following equations: 

P F Price et a1 

(2.27a) 

(2.276) 

( 2 . 2 7 ~ )  

where the parameter x in the amplitudes has been suppressed for clarity. At the mth. 
iteration in a stochastic representation of these amplitudes, one may defrne the corres- 
ponding equations: 

1 E t a o k + x C  Vkiao, 

alk =- E b i k  vki[Xa~i+ U o i ] -  
Eo 'I i 

Eo 'I i 
a2k =- E:azk+E Vki[xa2,+2aIi]-2E!,aIk -E&* 

( 2 . 2 8 ~ )  

( 2 . 2 8 ~ )  

Equations ( 2 . 2 8 ~ )  and (2.29a) merely re-express equations (2.8) and (2.9). At equili- 
brium, we have ( n d a a l i  from equations (2.28), and averaging.equations (2.29) gives 
Eo and its first two derivatives. 

The magnetic field derivatives can be determined in a similar fashion. If we assume 
h is small, and expand: 

H=Ho+xV'+hV2  (2.30) 
lYoj = C [Eot + i I j h  +$C?2jh2]li) +0(h3)  (2.31) 

~ , ( h ) = ~ , + ~ ~ h + 4 ~ ~ ~ ~ + 0 ( h ~ )  (2.32) 

i 

substitute in the Schrodinger equation and equate powers of h, then 

(2.33a) 
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Note that since the magnetic operator V2 flips single spins, and lies in the even 
spin-flip sector, it follows that in fact ZOk, Z2, are only non-zero in the even spin sector, 
& is only non-zero in the odd spin sector, and fil = O .  At the mth stochastic iteration, 
the corresponding equations are: 

(2.34a) 

(2.35a) 

(even sector) _- ( 2 . 3 4 ~ )  

j52"+1' = jy c n Z j  "+I) /?<;). (2.35b) 

Equations (2.34a), ( 2 . 3 5 ~ )  are just (2.8) and (2.9) once more. At equilibrium, (&)U 
Eli, from equations (2.34), and averaging (2.35) gives Eo and its second derivative with 
respect to the magnetic field. 

Finally, there is the spontaneous magnetization, which is strictly zero for any finite 
lattice (i.e. fil=JEo/ak =0, as above); but a finite-lattice observable can be found 
which converges smoothly to the spontaneous magnetization in the bulk limit (Yang 
1952, Uzelac 1980, Hamer 1982), namely: 

i 

(2.36) 

There is a practical problem here, however, conceming the normalization of the 
wavefunctions. One cannot use the overlap of a stochastic wavefunction with itself 
(($'gm)II&"))) as a normalization factor, because although (nk)a a, it does not follow 
that (n& a i ,  and a systematic error creeps in. We have tried to avoid this by setting 
up two independent ensembles in each of the even and odd spin sectors, and estimating 
the spontaneous magnetization as: 

1 
.Il(x) = j i ? ~ W l C  o;(n)l$O). 

n 

This is admittedly an awkward and ugly procedure, though it seems to work it is very 
possible that a better prescription could be found. 

3. Results 

3.1. Run parameters 

To obtain accurate results from a~Monte Carlo run, one must choose appropriate 
values for various run parameters. Firstly, one must check the time taken for the 
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ensemble to reach equilibrium. Figure 1 shows some results for the ground-state energy 
on a 6 x 6  lattice, at the pseudo-critical coupling, as a function of the number of 
iterations. The results are averaged over blocks of 64 iterations (Binder 1976). It can 
be seen that a reasonable equilibrium has been established after about 300 iterations, 
while there is still a clear correlation between successive block averages at a block-size 
of 64. Our production runs were taken between 3000 and 5000 iterations in length, 
and the first 768 iterations were discarded to allow for equilibrium. In estimating the 
random error a block-size of 256 was used, which was about the maximum practicable; 
the random errors may still be slightly underestimated at this block-size. 

Secondly, one must make an optimal choice of the variational parameters. By 
making a series of test runs with different values of these parameters, we found the 
optimum performance was achieved for e, in the range 0.65-0.70, and e, in the range 
0.3-0.4. The accuracy is improved by at least an order of magnitude by the use of 
parameter c , ,  and by a further factor of about 3 by the use of e,. 

Next, we need to check how the results depend on ensemble sue. Figure 2 shows 
estimates of the ground state energy, its thermal derivative and the magnetization, as 
functions of the initial ensemble size No', for a 5 x 5 lattice near the critical point. It 
can be seen that all the measured quantities are independent of ensemble size, within 
errors. 

The random error in the results decreases inversely with the square root of the 
ensemble size No),  as one would normally expect for a Monte Carlo procedure. 
Empirically we find, however, that the average occupation number goes up roughly 
like [No']''*, so that the average number of occupied basis states also goes up like 
[No)]"z. Thus the error decreases almost linearly with the inverse of the number of 
basis states, and therefore with the time taken. This is illustrated in figure 3 (a linear 
dependence would actually correspond to a slope of 1 on this graph, rather than 0.85). 
It follows that for a 'convergent' system such as the present one, one should aim to 
increase the ensemble size, rather than the number of iterations; and then the error 
will decrease almost inversely with the time expended, rather than its square root. This 
is the great strength of the present method. 

The maximum size of the runs we have performed for the 6 x 6 lattice was 5000 
iterations with an ensemble size 5 x lo8, an average number of 295K basis states, and 
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-1" t 

I I I 
512 102L 1536 o iterations 

Figure 1. Graph ofthe 'score', or estimate of E,,, as a function ofthe number of iterations. 
The results shown are averages over blocks of 64 iterations. Run parameterr: M =6, 
x=0.209357, e,=0.65, ~ = 0 . 4 ,  No'=4x10'. 
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Figure 3. A log-log plot of (error)-' against the 
number ofbasis States in the simulation. The straight 

-18.50 i 
O - L W  

Figure 2. Dependence of various thermodynamic 
quantities an IO4 where NO' is the initial 
ensemble size. Shown are ((1) Eo. ( b )  E & ,  ( c )  A. 

0 1 2 . Run parameters: M = 5, x 70.209 357, c, = 0.7, 4 = 

i ,  , ' l , c l i  
OLE40 

,O'(NO'I-'" 0.4. 

3.2. Finite lattice data 

As usual, we define (Hamer and Barber 1980) the pseudo-critical point at lattice size 
M as the coupling x, such that the scaled mass-gap ratio passes through unity: 

= 1 (3.1) 
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where 
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FM(x )  being the mass gap for lattice size M. The pseudo-critical points {xM,M= 
1,. . . ,5} have been determined previously (I) from Lanczos calculations. For M =6, 
we made a preliminary guess (x6=0.20935), calculated the mass gaps and their 
derivatives for M = 5 and 6, and extrapolated, to arrive at the estimate: 

x6=0.209357(10). (3.3) 

Next, the full ‘bells and whistles’ program was employed to estimate all the 
thermodynamic quantities of interest, for both lattice sizes M and ( M  - 1) correspond- 
ing to each pseudo-critical point xM. The results are displayed in tables 1 and 2. 

For the smaller lattices, the Monte Carlo results are virtually exact, and the 
eigenvalues agree with those calculated previously by Lanczos techniques (I) to at 
least 7 significant figures. For M = 4 and 5 the Monte Carlo estimates usually agree 
with the Lanczos results to within the quoted errors: this provides a check that the 
algorithm is working correctly. For the thermal derivatives the agreement is not always 

Table 1. Finitelattice data at the pseudo-critical points xM, calculated for the pair of lattice 
sizes M and (M-I) in each case. Given are the ground-state energy Eo, its first two 
derivatives E ;  and E ;  with respect to x, and the susceptibility x. 

x, M 4 Eb E;  X 

+=0.166699025014 1 -0.500 097 075 -3.0 0.0 1 .o 
2 -0.236 348 962 -3.307 336 10 -28.247 632 1 3.647 938 98 

s = 0.204 322 905 455 2 -0.381 369035, -4.41423141 -30.2486617 5.180061 19 
3 ’ -0.513307592 -7.48975007 -91.4573203 11.5282335(2) 

x4=0.2O8 168884717 3 -0.542797096 -7.84746467 -94.5403345 12.5297149 (4) 
4 -0.823 1120(1) -12.389989 (3) -197.3073 (2) 22.12048(3) 

xs = 0.209 058 949 569 4 -0.834 218 4 (2) -12.566 946 (4) -200.324 3 (3) 22.860 72 (4) 
5 -1.225 817 (2) -18.416 6 (2) -349.1 (1) 35.52 (1) 

xs= 0.209 357 (IO) 5 -1.231 3229 (6) -18.521 19 (6) -351.84(4) 36.10 (1) 
6 -1.72400 (1) -25.642 (1) -549.1 (4) 50.8 (2) 

Table 2. Shows finite-lattice data as in table 1, consisting of the mass gap F, its first two 
derivatives F‘ and F” with respect to x, and the ‘magnetization’ M. Also shown is the 
scaled mass-gap ratio R, calculated from each pair of mass gaps. 

XU M F  F‘ F 4 

x2=0.166699025014 1 2.0 0.0 0.0 1.0 

R ~ = ~ . O O O O O O O ( Z )  3 0.5397338(1) -6.9578592(3j 3 6 . 7 ~ 2 ( 1 )  0.~87558 m ( 5 )  

R2=1.0 2 1.0 -5.376 362 22 15.369 380 9 0.675 153 487 
x3 = 0.204 322 905 455 2 0.809~600 707 -4.721 384 47 19.093 589 5 0.723 833 467 

x4=0.208 168 884717 3 0.513 253 5 (2) -6.810 484 (7) 39.880 98 (2) 0.597 312 598 (5) 
R4 = 0.999 999 2 (8) 4 0.384 939 8 (2) -8.473 874 (5) 64.474 7 (3) 0.515 362 45 (3) 
xs = 0.209 058 949 569 4 0.377 423 3 (2) -8.415 350 (4) 67.052 4 (3) 0.518 766 62 (4) 
R, = 0.999 995 (7) 5 0.301 937 (2) -9.819 5 (2) 98.93 (5) 0.462 62 (1) 
x,,=0.209357(10) 5 0.299 015 (2) -9.7896 ( I )  101.08 (5) 0.464 143 (5) 
R,= 1.0004 (I) 6 0.24929 (3) -11.032 (2) 139.3 (5) 0.421 68 (3) 



Stochastic truncation for the (2t 1)D Ising model 2865 

within the quoted errors: but this we attribute to the fact that the Lanczos estimates 
were derived by a finite-difference procedure, subject to appreciable rounding and 
truncation errors. For the magnetic derivatives, the Monte Carlo results agree with 
Lanczos to 5 significant figures, or else within the quoted errors. The M = 5 ‘magnetiz- 
ation’ was not calculated in I. 

Unfortunately, the values computed at x=0.209 357 give a scaled mass gap ratio 
R6= 1.0004(1), instead of the expected value of one. A further extrapolation based on 
these values suggests that the true pseudo-critical point for M = 6  lies slightly 
higher, at 

x6= 0.209 394(10). (3 .3~)  

We did not have enough computer time allocated to repeat all the calculations at this 
new coupling; but enough information is available to extrapolate the  energy Eo and 
mass gap F, and their first derivatives, to that point. 

3.3. Finite-size scaling 

We now employ the techniques of finite-size scaling theory (Barber1984), or 
‘phenomenological renormalization’, to extract estimates of the critical parameters of 
the model from the finite-lattice data. Recall that the scaling behaviour of each quantity 
is referred to that of the mass gap, or inverse correlation length. If in the bulk system 
the critical behaviour of the mass gap is 

F x+xr - (x,-x)” (3.4) 

X x = ; ~ ( x c - ~ ) - ’  (3.5) 

F M ( ~ M )  mym 1 / M  (3.6) 

and that of (say) the susceptibility is 

then on the finite lattice one expects scaling behaviour 

and correspondingly 

X M ( X M )  M;m My’” (3.7) 

with similar formulae applying for the other thermodynamic observables. Hence one 
may obtain estimates for the critical index ratios as follows: 

Y 
‘linear’ estimate: &., = M (E:;::) - ’) M7m 

I 

(3.9) 
[ X M ( X M ) / X M - - I ( X M ) I  I - Y . ‘logarithmic’ estimate: .&=In 

In[M/M-I] ~ - a :  U ’  

Table 3 shows the sequences of finite-lattice estimates forthe critical indices obtained 
in this way. The ratios l /u ,  n / v ,  p / u  and y / u  were obtained from the finite-lattice 
beta function, specific heat, magnetization and susceptibility, respectively. The ratios 
( $ + 2 p ) / v ,  ( 2 - m ) l v  were obtained in the same way from the combinations xMAL 
and FL/CM, respectively: they have been computed for later comparison with hyper- 
scaling relations. A brief inspection shows that the correction-to-scaling terms are 
generally smaller for the ‘logarithmic’ estimates. 
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Table 3. Finite-lattice estimates for various critical indices in the model, as functions of 
lattice size M. 

M I/’ 4 PI. Y /  y 

(a) ‘Linear’ estimates 
2 1.28379 - 0.649693 5.29588 14.0056 - 
3 1.38076 1.031 36 0.564807 3.67650 7.13269 4.663 21 
4 1.432 58 0.695 789 (5) 0.548 792 3.061 77 (1) 5.486 18 (2) 4.270 62 (2) 
5 1.4643 (1) 0.576 1 (8) 0.541 2 (1) 2.769 (2) 4.769 (3) 3.966 (2) 
6 1.483 (1) 0.503 (5) 0.549 (2) 2.44 (3) 4.23 (4) 3.79 (2) 
(b) ’Logarithmic’ estimates 
2 1.48154 -~ 0.566713 1.867 08 3.00051 - ~ 

3 1.52086 0.728769 0.514437 1.973 00 3.001 87 2.312 94 
4 1.541 26 0.557 462 (4) 0.512927 1.975 80 3.001 72 2.525 06 
5 1.5529(1) 0.4887(6) 0.5133(1) 1.975(1) 3.002(2) 26171(8) 
6 1.557 (1) 0.441 (4) 0.526 (2) 1.87 (2) 2.93 (3) 2.685 (9) 

The problem now is to extrapolate the finite-lattice sequences for these indices to 
the bulk limit, M + m. These sequences are expected to converge logarithmically, 
according to finite-size scaling theory (Barber 1984). A number of algorithms exist for 
accelerating the convergence of such a sequence to its limit (Smith and Ford 1979, 
Barber and Hamer 1982, Osada 1990); some which have been discussed in a finite-size 
scaling context are the alternating VBS algorithm (Hamer and Barber 1981), Lubkin’s 
method [I] Belemay’s (1986) method, and the algorithm of Bulirsch and Stoer (Henkel 
and Schutz 1988). We have tried all of these methods on the data shown in Table 3, 
with rather poor success. The trouble is that the finite-lattice sequences are very short, 
with substantial errors in the last two entries: so that sophisticated algorithms such as 
those mentioned have insufficient data to work on.  we have found it more useful and 
appropriate to use simpler methods, such as graphical analysis and Neville tables 
(Guttmann 1989), which fit the sequence with a polynomial in 1/M. 

The sequence of pseudo-critical points converges very rapidly, with corrections 
O ( I W - ~ ) ,  as illustrated in figure 4. Practically all methods agree on the extrapolation 
to the bulk limit: 

x, = 0.209 67(4). (3.10) 
This value improves on the previous finite-lattice result, 0.2096(2), of [I]; it is in fair 
agreement with the series estimate (He et al 1990) x, =0.209 72(2). 

Figures 5-8 graph the finite-lattice sequences for l /u ,  a / u ,  p/v and y lv ,  respec- 
tively, against 1/M. For the case of the exponent l l v ,  it can be seen that the sequence 
is very nearly linear in 1/M.  the^ M = 6 value lies a little below the trend of the other 
values; its nominal error is small enough so that it should be right on the verge of 
being useful in the extrapolations to the bulk limit, but since the error may be somewhat 
underestimated (for reasons mentioned above), we have preferred not to rely on it. In 
what follows we refer mainly to the values up to M=S.  A Neville table calculated 
from the ‘logarithmic’ sequence is given in table 4. It can be seen that the results in 
the second column (the linear extrapolations) are quite stable, and hence we estimate 
an asymptotic value 1/ U = 1.599(5). A similar exercise for the ‘linear’ sequence gives 
I / u  = 1.593(5); and averaging the two values, we obtain a final estimate 

l / u  = 1.596(5). (3.11) 
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Figure4. Agraphofthepseudo-criticalpointx, againstl/M', where Misthelatticesire. 

Figure 6. Estimates of e/", as in tigure 5. 

Figure 5. Graph of finite-lattice exponent exponent 
estimates of l / v  against 1/M. 'Logarithmic' esti- 
mates are given by circles, 'linear' estimates by 
squares. The lines are merely to guide the eye. A 
limiting estimate at M + m  is also included. 

Figure 7. Estimates of !3 f v, as in tigure 5. 
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Figure 8. Estimates of y l v ,  as in figure 5. Figure 9. Estimates of (y+Zp)/v, as in figure 5. 

Table 4. A Neville table formed from the finite-lattice sequence of ‘Logarithmic’ 
approximants to I/u. The original approximants are in the first column, labelled by the 
lattice size M. The last TOW has not been completed, because the errors are too large for 
it to be worthwhile. 

M Approximanta 

2 1.481 54 
3 1.520 86 1.599 49 
4 1.541 26 (1) 1.60248 (2) 1.605 47 (3) 
5 1.5529 (1) 1.600(1) 1.595 (3) 1.587 (6) 
6 1.557 (1) 1.58 (1) 

Similar procedures have been camed out for the other exponents, relying mainly 
on the ‘logarithmic’ sequence in each case. For the exponent alv, the correction-to- 
scaling terms are large, and the result is rather inaccurate: 

a / v  = 0.20(3). (3.12) 

This is much better than the estimate 0.34(5) of [I], however: the main reason being 
that the simple Neville table does a better job of extrapolation than the Lubkin 
algorithm. 

In the case of the magnetic exponents p/v and ylv, it can be seen from figures I 
and 8 that the M = 6 values unfortunately lie well away from the trend established by 
the smaller lattices. This may well be attributable to the underestimate of the pseudo- 
critical point x, discussed above. The values carry an error so large that they would 
have been of little use in the extrapolation anyway: so they have simply been ignored. 
The ‘logarithmic’ estimates for M s  5 are actually quite stable, and hence we estimate 

p/v = 0.518(5) (3.13) 

and 

y / v  =1.966(10). (3.14) 

The result for p/v improves on that of [I], 0.513(10), because the result for M = 5  
was not then available. 
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Dividing the estimates for +/U, etc., in table 3 by those for I jv ,  one can obtain 
sequences for the exponents &, p. y directly. Extrapolating these sequences, we estimate: 

(3.15) 

For the combination ( y  +2p)/v, the ‘logarithmic’ estimates are remarkably stable 

. .  ~. 
LY = 0112(2), p = 0.324(3), y = 1.226(10) -’ 

which are in good agreement, within errors, with equations (3.11)-(3.14). 

(figure 9), provided we again ignore the M = 6  result; hence we estimate 

Y 2P -+- = 3.000( 1) 
Y V  

which agrees to within 0.03% with the hyperscaling relation 

-+-=3 Y 2P 
v u  

(3.18) 

(3.19) 

Table 3 also gives results for the combination ( 2 - 0 ) l v .  Extrapolation of this 
sequence gives 

-_-= 3.0(1) 
v u  

(3.20) 

in fair agieement- with~the Josephson hyperscaling relation 

(3.21) 

where d is the dimensionality of the system. 
. .  

. .  4. Summary and conclusiom, . ~- .. . , , ~  . .  .~ . .. 
The   results of this study have been somewhat mixed. Enough ‘has been~done, we’ 
believe, to demonstrate that ‘symmetrized‘ stochastic truncation is a very powerful 
Monte Carlo technique, though of strictly limited applicability. It can give extremely 
accurate results, and for a Exedlattice size the accuracy increases almost linearly with 
the storage space and computer time available. On theother hand, the ‘symmetrization’ 
procedure i s  very expensive in~computer time, and scales up roughly like N’, where 
N is the number of sites. The procedure is therefore o d y  efficient for relatively small 
lattice sizes, and for ‘convergent’ systems (dominated b y a  relatively few basis states), 
such as ferromagnetic spin models in a high temperature representation, where the 
average ‘occupation number’ ( n )  is high. Thus the procedure is best seen as a Monte 
Carlo extension of the standard Lanczos technique, and could even be combined with 
it. It should be particularly useful for systems which are ‘convergent’, but do not have 
a finite set of basis states, such as the O(2) or O(3) Heisenberg models. 

In the present case, the technique gave essentially exact results for the smaller 
lattice~sizes, agreeing  with the Lanczos eigenvalues’to eight or nine significant figures. 
For lattice size M = 6 ,  we obtained a ground-state. energy accurate to about one part 
in lo5 at the pseudo-critical point, which was our original aim. Other thermodynamic 
quantities, like the ‘magnetization’ and susceptibility, were also obtained very accur- 
ately. 

Nevertheless, our results for M =6 were not sufficiently precise, in the end to be 
of much use in the Enite-’siie scaling analysis of the critikl iarimeters; Any error in 
the finite lattice result will be ‘amplified‘ by about an order of magnitude in extrapolating 
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Note added in proof: After this work was completed, Schulz and Ziman (1992) have reponed exact Lanczos 
eigenvalues for the frustrated antiferromagnetic Heisenberg model on a square lattice of 36 sites. It should 
be noted that these calculations, as well as those of Lin (1990), require an order of magnitude fewer basis 
states (namely 2.4M for Lin's 32-site calculation, and 16M for Schuh and Ziman's 36 site calculation) than 
the 160M required for an exact 36 site triangular lattice Ising model calculation. This is because of the extra 
constraint Sz equals constant in the XXZ Heisenberg model. We are grateful to the referee for drawing 
this work to our attention. 
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